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Abstract
We explore a well-motivated class of inflationary models from the particle
physics point of view: those with a flat tree-level potential, where the radiative
corrections cause the slow rolling of the inflaton and the running of the spectral
index n. This includes typical SUSY inflation models (e.g. D-hybrid inflation).
In the small-coupling regime the predictions for the size and running of n are
remarkably neat and model independent, e.g. −dn/d ln k = (n−1)2 � 1. The
fit to WMAP data gives the number of e-folds, Ne, as an output: Ne = 26+30

−8 ,
which is very encouraging. On the other hand, to account for the WMAP
preliminary indication of a running n crossing n = 1, we find it extremely
natural to incorporate non-renormalizable operators (only the dominant one is
relevant), which automatically increase the running as demanded. The analysis
is still very model independent and predicts a rapidly changing n at the initial
scales, which then gets stabilized below n = 1.

PACS numbers: 98.80.Cq, 98.80.Es

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The WMAP data [1, 2] have opened the era of precision observational cosmology. The
challenge for the theoretical cosmology and the particle physics is to understand these data
and, if possible, to make predictions to be verified by future observations. In this sense,
inflation stands as the most successful and promising theoretical scenario. However, the details
of the inflationary scheme that reproduces the WMAP (and other) data are still uncertain.
Furthermore, a convincing inflationary scheme based on sensible particle physics is still
lacking, in spite of interesting developments. (This is why there are so many inflationary
models.)
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More to the point, the WMAP measurements of the power spectrum of scalar perturbations,
Pk , give quite direct information about the shape of the inflationary potential, V (φ). In the
slow-roll approximation [3]:

Pk � 1

24π2ε

V

M4
p

with ε = 1

2
M2

p

(
V ′

V

)2

. (1)

Let us recall here that the space wave number (sometimes called simply the ‘scale’) k is related
to the inflaton field, φ, by

dφ

d ln k
= −M2

p

V ′

V
= −Mp

√
2ε. (2)

The variation of Pk with the scale is encoded in the scalar spectral index, n:

n − 1 = d ln Pk

d ln k
� 2η − 6ε with η = M2

p

V ′′

V
. (3)

Finally, the spectral index itself may change with k:

dn

d ln k
� −2ξ + 16εη − 24ε2 with ξ = M4

p

V ′V ′′′

V 2
. (4)

Summarizing, observational information about Pk, n and dn
d ln k

gives information about V and
its derivatives, V ′, V ′′, V ′′′, etc. The WMAP values for n and dn

d ln k
depend on the model

assumed for the fit. More precisely [2]:

(a) Assuming a �CDM universe [3] with constant n (and no tensor perturbations):

n = 0.951 ± 0.016 (68% c.l.). (5)

(b) Assuming a �CDM universe with constant dn
d ln k

(and no tensor perturbations):

n(k0) = 1.06 ± 0.08 (68% c.l.) (6)

dn

d ln k
= −0.055 ± 0.030 (68% c.l.). (7)

The value of Pk is also slightly dependent on the model, being Pk ∼ (2 × 10−9) at
k = k0 ≡ 0.002 Mpc−1.

What is the impact of these results in particular inflationary models? Using a monomial
potential V ∝ φα (with α � 1) one gets n ∼ constant, in agreement with the model (a) above.
Comparing with equation (5), this allows us [1, 2] to put the bound α < 4 (95% c.l.) (α = 4 is
marginally allowed). It is interesting that the data favour renormalizable potentials. Actually,
the particular case V = 1

2m2φ2 works quite well although it requires φ2
∗ ∼ 200M2

p, where
the star denotes the ‘starting’ time of inflation, i.e. the time 50–60 e-folds before the end of
inflation.

On the other hand, the indication about a significant running of n, as given by (7),
is not compelling, but maybe not irrelevant either [1, 2]; the substantial but not dramatic
improvement in the global fit when the running is included does not allow us to be more
precise at the moment. If confirmed by future measurements and analyses, it leads us to
a very interesting and suggestive situation. Namely, in the region of k tested by WMAP
(which corresponds the first ∼6–7 e-folds of inflation) n must go from ‘blue’ (i.e. >1) to ‘red’
(i.e. <1). As a matter of fact, this is very difficult to achieve in models [4], specially in well-
motivated models from the particle physics point of view. (We will come back to this subject in
section 3.)
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2. A broad class of models

Let us consider a large class of well-motivated models from the particle physics point of view
which, however, has not been considered before for these matters in a model-independent way.
Namely, consider ‘flat tree-level potentials’1, i.e.

Vtree(φ) = ρ = constant. (8)

Then, the potential derivatives V ′, V ′′, V ′′′, . . . arise from the radiative corrections to V . These
potentials arise typically in supersymmetric (SUSY) theories: V SUSY

tree is ordinarily plenty of
accidental flat directions. Such flatness is broken by radiative corrections since there is no
symmetry protecting it. Generically, at 1-loop

V (φ) = ρ + β ln
m(φ)

Q
, (9)

where Q is the renormalization scale (which might have absorbed finite pieces). Note that
ρ depends implicitly on Q through its renormalization group equation (RGE) and that the
Q-invariance of the effective potential implies β = dρ/d ln Q at 1-loop. Finally, m(φ) is the
most relevant φ-dependent mass (there could be several relevant (and different) masses, which
is a complication we ignore for the moment).

The leading-log approximation (which amounts to summing the leading-log contributions
to all loops) is implemented in this context by simply taking Q = m(φ). This choice eliminates
the potentially large (and thus dangerous) logs, improving the convergence of the perturbative
expansion. Then,

V (φ) � ρ(Q = m(φ)). (10)

In general, one expects m2(φ) = M2 + c2φ2, where M does not depend on φ and c is some
coupling constant (which depends on Q according to its own RGE). We will ignore for the
moment the possible presence of the M piece, so Q = cφ and thus

dQ

dφ
= Q

φ
α = cα, (11)

where
1

α
= 1 − βc

c
and βc = dc

d ln Q
. (12)

(βc is the conventional β-function of the coupling c.) It is now straightforward to write
expressions for the derivatives of V :

V ′ = α
β

φ
,

V ′′ = −α
β

φ2

[
1 − α

β̇

β
− α2

(
β̇c

c
− β2

c

c2

)]
, (13)

V ′′′ = · · · ,
where the dots stand for derivatives with respect to ln Q.

Note that from equation (2) we can relate the wave number k with the scale Q:

ln
k0

k
� − ρ

βc2M2
p

(Q2
0 − Q2) = −3H 2

βc2
(Q2

0 − Q2). (14)

Therefore, in these models there is a direct correspondence between slow-roll and RG running.
For example, the spectral index, n(k), scans physics at the corresponding (high-energy) scale.

1 I follow from now on the discussion and results of [5].
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Example. An example of such a scenario is the first model of hybrid D-term inflation, proposed
by Binétruy and Dvali [6]. The model (BD model from now on) is globally supersymmetric
with canonical Kähler potential and with superpotential

W = 
(λH+H− − µ2), (15)

where λ and µ2 are the real constants, and 
,H+ and H− are the chiral superfields. H± have
charges ±1 with respect to a U(1) gauge group with gauge coupling g and a Fayet–Iliopoulos
term ξD . The associated tree-level scalar potential is given by V0 = VF + VD , with

VF = |λH+H− − µ2|2 + λ2(|H−|2 + |H+|2)|
|2,

VD = g2

2
(|H+|2 − |H−|2 + ξD)2,

(16)

(the fields in these expressions are the scalar components of the chiral superfields). The
global minimum of the potential is supersymmetric (i.e. VF = 0, VD = 0) and occurs at

 = 0, 〈H±〉 �= 0. But for large enough |
|

〈H±〉 = 0, V0 ≡ ρ = µ4 + 1
2g2ξ 2

D. (17)

After radiative corrections, the 1-loop potential takes the form (9) with ρ given by (17),
m(φ) = 1

2λ2φ2 and β = 1
8π2

(
g4ξ 2

D + λ2µ4
)
.

3. Small-coupling regime

In the regime of very small coupling constants one has βc/c � 1 and thus α � 1.
Correspondingly, all the previous equations (11)–(13) become greatly simplified and (even
more importantly) model independent. In particular,

V ′ � β

φ
, V ′′ � − β

φ2
, V ′′′ � 2

β

φ3
, etc (18)

and hence

ε � 1

2

M2
p

φ2

(
β

ρ

)2

, η � −M2
p

φ2

β

ρ
� −2

(
β

ρ

)−1

ε, ξ � 2η2. (19)

Normally ε � η, and thus n − 1 � 2η. From the previous expressions it is straightforward
to get model-independent predictions for physical observables. In particular, the running of n
with ln k is given by

dn

d ln k
� −2ξ = −(n − 1)2. (20)

Consequently, dn/d ln k is negative, as suggested by observation, though its value tends to be
quite small. In fact, the sign of n − 1 cannot change along the inflationary process, which
would contradict the WMAP indication of n crossing n = 1, if it eventually gets confirmed.
In addition sign(n − 1) = −sign(V ′) = −sign(β). Usually β (and thus V ′) is positive and
therefore we naturally expect n < 1 but this is not mandatory.

The number of e-folds, Ne, since t∗ until the end of inflation can be easily computed
plugging ε, as given by equation (19) in the usual expression Ne � 1

Mp

∫ φ

φend

1√
2ε

dφ,

Ne � − 1

2η(φ∗)
� 1

1 − n∗
. (21)

This can be used to write equation (20) in an integrated form as

n = 1 − 1

Ne − ln(k/k∗)
. (22)

Note that Ne is the only independent parameter in this equation.
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Now, we can wonder how well do the previous expressions fit the WMAP results. Using
the COSMOMC program to perform the fit, one gets the following results2 [7]:

• 68% c.l. −→ n(k0 = 0.05 Mpc−1) = 0.95 ± 0.017 ⇒ N0
e = 20+10

−5

• 95% c.l. −→ n(k0 = 0.05 Mpc−1) = 0.95+0.030
−0035 ⇒ N0

e = 20+30
−8

Here N0
e represents the number of e-folds from k0 = 0.05 till the end of inflation. Thus

N∗
e � N0

e + 6 e-folds. Note that Ne has been considered just a parameter of the fit, so we
could have obtained Ne ∼ 1 or ∼103 or ∼ − 20. Remarkably, however, it turns out to be
consistent with the desired N∗

e = 50–60 at 95% c.l. (for a complementary approach see [8]).
We find these results very nice and non-trivial. We can also allow for tensor perturbations
(which means a non-negligible ε parameter, since Pt(k) = 16εPk). Then we cannot ignore
the ε contribution in equations (3), (4). This is still under study.

In summary, the results obtained by considering small coupling in scenarios with flat tree-
level potential are both very model independent and non-trivially consistent with the WMAP
results. They imply in particular dn

d ln k
�= −(n − 1)2 � 1. However, they could not explain a

running n(k) crossing n = 1. Therefore, if the WMAP indication dn
d ln k

∼ −0.055 gets finally
confirmed, these would be excluded . . . but not only them! To cook up inflationary models
able to account for that fact has proved to be a difficult task, and the few existing examples
are rather artificial, lacking physical motivation.

Hence, it would be nice if the models considered above could be modified in a well-
motivated way, so that they could account for the dn

d ln k
∼ −0.055 preliminary indication.

4. No-so-small-coupling regime

If the β-functions are positive (as usual, see the above discussion), couplings grow in the
ultraviolet and there will be a scale where the second and third terms within the square
brackets in (13) compete with the first one. Since they naturally have the opposite sign, one
can expect that at sufficiently high scales (which means initial stages of inflation) the sign of η,
and thus n− 1, may get positive, which therefore could account for the preliminary indication
of WMAP.

As a matter of fact, we find this behaviour absolutely natural and even unavoidable in
this regime. However, the analysis becomes model dependent (there are new parameters in
the game as β̇, βc, β̇c). Furthermore, reproducing the WMAP preliminary indication on the
running spectral index and the other physical requirements at the same time (in particular, a
sufficient number of e-folds) is not a trivial matter.

We have explored this no-so-small-coupling regime in the BD model, depicted at the end
of section 2, finding analytically the constraint[5]

−(
N0

e

)2 × dn

d ln k

∣∣∣∣
Q0

� 1.1, (23)

which makes it impossible to fulfil dn/d ln k|k0 = O(−0.05) and N0
e ∼ O(50) simultaneously.

(A similar kind of bounds was obtained later in [9] in a more general context. For more related
work on this subject see [10].)

2 On the technical side, let us mention that we have used six chains, examining ∼105 samples of parameters each.
The number of steps accumulated in each chain is about 3 × 104. The parameters fitted are seven: �Bh2, �CDMh2,
θ , τ (I followed the notation of WMAP) and the three parameters of the model: Pk(k∗), Ne , ε (the latter only if the
tensor modes are included, as commented below). The convergence criterion used is the standard Raftery and Lewis
one.
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Figure 1. Scalar spectral index as a function of log10[k(Mpc−1)] for the inflaton potential of the
BD model for two different choices of parameters.

The previous behaviour is illustrated by figure 1 which gives the spectral index n as a
function of the scale wave number k for two different choices of parameters: one to get right
Ne and the other to get right dn/d ln k.

Of course, one cannot exclude that other tree-level-flat models are able to reproduce such
running spectral index without the above limitation for the number of e-folds. To achieve this
one needs sizeable η at high scale, so that the spectral index runs appreciably in the first stages
of inflation, and small ε at lower scales, so that a sufficient number of e-folds is produced. This
implies that β (and thus the relevant coupling constants) must evolve from sizeable values at
high scale to substantially smaller values at lower scales. In this sense, the crossing of some
threshold of new physics along the inflationary course can help, though the analysis for the
BD model shows that this is not enough to solve the problem. Fortunately, there is a simpler
and better alternative, which we discuss next.

5. Non-renormalizable operators (NRO)

Suppose there is a scale of new physics, M, higher than the scales relevant to inflation (i.e.
φ2 � M2). In general, this physics will show up at low scales as non-renormalizable
operators (NROs) suppressed by inverse powers of M. Due to the suppression factor, the
impact of the NRO in the physics at low scales is normally very small. However, if the NRO
has characteristics not shared by the low-energy physics, its effect may be significant (as
happens with higher dimension operators that mediate proton decay or give a Majorana mass
to the neutrinos). In our case, the new physics does not need to respect the accidental flat
directions of the effective theory. Thus one expects

V (φ) = ρ + β ln
m(φ)

Q
+ φ4 φ2N

M2N
. (24)

The first two terms just correspond to the generic 1-loop potential we have discussed in
previous sections. In the small-coupling regime, as in subsection 2.1, we take β as a constant.
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Figure 2. Example of inflaton effective potential (normalized to ρ) with a NRO as in equation (24)
for N = 9. The star marks φ∗ and the circle, φ0.

The last term in (24) is a non-renormalizable operator (NRO) left in the low-energy theory after
integrating out some unspecified physics at the high scale M. This scale absorbs any possible
coupling in front of the operator. Of course V (φ) may contain other NROs of different order.
Here we assume that the one shown in equation (24) is the lowest order one, and thus the
dominant. The sign and power we have assumed for this NRO are convenient to guarantee the
stability of the potential. Note also that an even power for this operator is what one expects
generically in supersymmetric theories (an explicit example of this is given in [5]). Apart from
this, the potential (24) is completely general, and therefore the analysis is essentially model
independent. By trivial inspection of the derivatives of V (φ) with respect to φ,

V ′(φ) = β

φ
+ 2(N + 2)φ3 φ2N

M2N
,

V ′′(φ) = − β

φ2
+ 2(N + 2)(2N + 3)φ2 φ2N

M2N
, (25)

V ′′′(φ) = 2
β

φ3
+ 4(N + 2)(2N + 3)(N + 1)φ

φ2N

M2N
,

we realize that the NRO can have a significant impact on inflation when the small number
(φ/M)2N is comparable in size to β/φ4 (which is also quite small). It is also immediate to
realize from (25) that, for sufficiently large φ, the higher derivatives V ′′, V ′′′ (and thus η, ξ )
can receive a large contribution from the NRO while the contribution to V ′ (and thus ε) is much
less significant, thanks to the additional (2N + 3) and (2N + 3)(2N + 2) factors in V ′′, V ′′′.
This is precisely what we need to modify the spectral, n, and its running with k at the initial
scales, without changing ε (and hence Ne) significantly.

This is illustrated in figure 2, which shows the effective potential (24) as a function of
φ/Mp for a particular choice of the parameters. It is easy to show [5] that larger values of
N lead to stronger running of n. In our case we have taken N = 9, which is rather large but
perfectly possible in the context of SUSY and string constructions (for details see [5]). The star
and the circle denote φ∗ and φ0, respectively. Note how φ∗ is below the range where the NRO
starts to be important for V ′(φ) (but not for V ′′(φ)). The corresponding slow-roll parameters
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Figure 3. Slow-roll parameters (upper plot) and scalar spectral index as a function of scale in
Mpc−1 (lower plot) for the inflaton potential of figure 2.

are shown in the upper plot in figure 3 as a function of φ/Mp. Finally, the lower plot of
figure 3 gives the scalar spectral index as a function of k, which has the desired behaviour,
with dn/d ln k|∗ � −0.03 and Ne � 50. (There are many more succesful examples.)

In general, an accurate approximation for the spectral index is

n = 1 − 1

Ne − ln(k/k∗)
− Ne

(N + 1)

(
dn

d ln k

∣∣∣∣
∗

+
1

N2
e

)(
1 − 1

Ne

ln
k

k∗

)N+1

(26)

(this corresponds to equation (77) in [5], after some algebra to simplify the expression). Note
that n depends on more parameters than before introducing the NRO (now it depends on
Ne, dn/d ln k|∗ and N) but it is still quite model independent.
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6. Conclusions

We have considered a broad and well-motivated class of models, defined by having flat tree-
level potential, which is typical of SUSY scenarios. In these models V ′, V ′′, . . . arise from
radiative corrections.

In the small-coupling regime the predictions are very clean and model independent, e.g.
dn

d ln k
� −2ξ = −(n − 1)2, n = 1 − 1

Ne−ln(k/k∗)
. The fit to the WMAP data gives Ne = 26+30

−8
(95% c.l.), which is remarkably consistent with a succesful inflation.

However, this regime is not consistent with a running n(k) crossing n = 1. Therefore,
if the WMAP indication in this sense got finally confirmed, these models (and most inflation
models) would be excluded. On the other hand, we have discussed how adding a non-
renormalizable operator (NRO) that spoils the accidental tree-level flatness helps a lot to get
a sizeable running of n at the initial stages of inflation. The analysis can be still done in an
essentially model-independent way, and we have explicitly shown how the WMAP can be
accounted for in this way.
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